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ON THE DEFORMATION OF AN ELASTIC HALF-SPACE WITH A THIN SLIT FOR 

MIXED CONDITIONS ON ITS BOUNDARY* 

V.S. ANTSIFEROV and YU.P. ZHELTOV 

The problem of the state of stress and strain in an elastic half-space 
with a cutout in the shape of a circular slot is solved by Kelvin's 

method /l/. The conditions on the slot are satisfied in a suitable 
manner by selecting the scalar and vector mass force potentials as 
generalized functions concentrated at the slot. The problem reduces to 

a system of Fredholm integral equations of the second kind in a 
semi-infinite interval. The solution for an elastic space with a slot 
is obtained in final form in the limiting case, which enables an 
estimate to be made of the magnitude of the settling of the earth's 
surface as a result of oil or gas deposit development. 

1. Permutation of the problem. The axisymmetric problem of the stress and strain dis- 
tribution in an elastic half-space E containing a cutout L in the form of an infinitely thin 
circular slot of radius R located parallel to the half-space boundary at a depth H is examined 
(see the sketch). A cylindrical r, z, 8 system of coordinates is selected with origin at 
the centre of the slot, where the z-axis is directed towards the free surface perpendicular 
to it. The half-space boundary is stress-free while the displacements equal zero at infinity. 

We start from the complete system of equations of the axisymmetric theory of elasticity 
that describe the state of strain of a body /2/ 

(h + p) grad (div u) + nV2u + q = 0 

o= _iL -&(ru,) + (i" + 2p) 2, 

(1.11 
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where h, p are the Lam& constants, u is the displacement vector,u, = u,, U, =U,, a = u, is 
the normal stress, and z =z,, is the shear stress. The mass force vector q is a generalized 
function concentrated on L (and equal to zero in E\L) /3/. The boundary conditions on the 

free surface and at infinity are 

o=O,z=O,z=H; u~+o,uI+o,z~-cc (1.2) 

The set of all solutions of system (1.1) that satisfy conditions (1.2) can be expressed 
(by using integrals of the Hankel transformation type) in terms of two arbitrary functions 
of a single argument. Consequently, problem (1.1) and (1.2) reduces to a system of integral 
equations for these functions for any pair of independent boundary conditions on the slot 
surface. 

2 

Let us demonstratethis method by taking the problem with a given distribution of the 
shear stress z and a linear combination of the normal stress (J and a jump in the axial 
displacement on the slot surface as a model 

7 = TO (r), o + a tu,1 = u. (r), z = +o, r < R (1.3) 

where zO (r), uD (r) are given continuous functions and Iuzl = z+(r; +0)- u,(r;-0), a is a con- 
stant coefficient. 

We will seek the set of quasiregular /4/ solutions of problem (1.1) and (1.2) by Kelvin's 
method /l/. Let q = grad 'p + rot I, f =fee (cp,f be scalar and vector potentials of the vector 
q and ee the angular unit vector). 

We set 
n = grad 'pl + rot f,, f, = flee (1.4) 

where YJ~ (r, z), fi (r, z) are new unknown functions. Then /l/ 

(h + 2p)V29, + cp = 0, yV2f, + f = 0 

Since /5/ VBf, = (Vzfi - FfJee the system of equations to determine r$~~, fi (for given 
q, f’) takes the form (instead of (1.1)) 

(A + 2lw~, + ‘p = 0, p (V2fi - r-%) + f = 0 (1.5) 

We apply a Hankel transformation with respect to the argument r. We use the notation 
@', @,, i7,, s (functions of % and r) for the zero-order Hankel transforms for cp, 'P1r US, o 
/2/. Analogously, let F, F,, U,, T be first-order Hankel transforms for f, fl, ul,‘c. Apply- 
ing the appropriate Hankel transforms to Eqs.(l.S), the second equation in (1.1) and (1.4) 
and the conditions (1.2), we obtain 

0," - EaO1 = -@l(h + 2p), F,” - %aF, = -F/p 

s = h%U, + (h + 2p)U,‘,I T = p (U,’ - EU,). 

U, = - (Em,, + F,‘), U, = 0’1) + %Fl 
S=O, T=O, z=H; U,-tO, U,-tO, z-+--o0 

(the prime denotes differentiation with respect to 2 in the space of 

2. Solution of the probkm. We set 

@ = P, (EP (z).+ %Pe (%)hE'd + EP, (%F 

F = %Pa (%)e-“‘1 1 z I’ - %I’, (E)&* 

(I.61 

(1.7) 

(1.8) 

generalized functions). 

(2.1) 

(6 (4 is the generalized delta function). It is easy to verify that the mass force q=o 
in E\L when the necessary and sufficient conditions 
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are satisfied. 
The rest of the functions Pi (E) (i = 1,2,3) are as yet arbitrary. Substituting (2.1) 

into (1.6), finding the generalsolutionsof these equations in the space of generalized func- 
tions, then determining U,, U,,S and T by means of (1.7) and satisfying conditions (1.8), 
we can express P, in terms of PIand P,. Changing to dimensionless quantities by means of 
the formulas 

(2.3) 

(p. is a characteristic constant having the dimensions of stress), the stress tensor and dis- 
placement vector components can be expressed in terms of two arbitrary functions g1 (t) and 
gz (t) by using inverse Hankel transformation formulas. In particular 

U, (p; b) = -_P@Q 5 e-*' ((1 f Wg, - b@z)J, (pt)dt (2.4) 
Q = Iz (h i_ 2pfp (A + $1 

(Here and henceforth, integration over t is between 0 and -j-m). Satisfying conditions (1.3) 
we obtain by taking account of (2.3) 

1 Cgrlil(Pt)dt = 5 te-2b' (A+(t)g,--B(t)g,)J,(Pt) dt + 

~Qjjg,-+p~ ) f, (pt)dt + Q*(P)? P>i 

s Q!lJ, (PW = s tP*’ (A- (t)gz - B @)g,)J, (pt)dt + 

To* (P), P < 1; s WI (PW = 0, P > 1 

A* (1) = 1 ir: 2bt + 2bV, B (t) = 2b2t2 

A system of integral equations for the functions g, (1) and g%(t) results. 

3. A q.wciaZ case of an infinite space with given shear and nornd stresses 
surface. For H-++w (b++ca), cc=0 system (2.5) and (2.6) simplifies to 

s tg,J,(ptW 2 o,*(P), P < 1; 5 g,J!l (pt)dt = 0, P > 1 
s &Jl(PW = z** (P)> P < 1; s %J,(PGdt = 0, P > 1 

The system of dual Eqs.(3.1) is solved in /2/ 

System (3.2) is solved by Hankel inversion formulas 

1 

g2(t) = s-G* (P)PJI@P)dP 
0 

If oo(r)~p,, z~(~).)T~ (po,'co are given constants), then according to (3.3) and (3.4) 

(2.5) 

(2.6) 

on the sZot 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

Finding the formula 
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4 (p; + 0) = - -j- PaQ s kl - II (A + 2w 672) Jo w dt 

as H-++ao substituting (3.5), and simplifying, we find 

yz (p; + 0, = n-‘p&l )r/1-- + &-r,R (A + P)_’ (1 -I& P < 1 

For z,,=O this formula reduces to that known in /2/. 

4. The general case. Reduction to a system of Fredhotm integral equations. The system 
of two Eqs.(2.5) can be reduced to one equation by the method by which system (3.1) was solved. 
By understanding uO* in (3.3) to be the whole right-hand side of the first equation in (2.5), 
changing the order of integration, and simplifying, we can obtain 

4 k, (4 - IL (h -t W1 gz WI ds 

Analogously, from the second equation in (2.5) we have 

(4.2) 

B (4 g, (4) dx 

Therefore, the solution of the problem reduces to the problem of integrating a system of 
two Fredholm integral equations of the second kind with continuous kernels, where the desired 
functions are g, (t), g, (t) E C LO; +m[. 

5. Application to the problem of thesetttingof the bottom surface during oil and gas 
deposit development. When oil and gas deposits having a strata1 pressure that varies with 
time are developed, the deformation of the mountain rocks reaches the bottom surface causing 
it to subside. Consequently, the development of a method for making quantitative predictive 
estimates of this deformation is quite important. 

As a result of the development of a certain deposit let the strata1 pressure change by 
an amount Ap after which an equilibrium state occurs in the stratum and mountain rocks. 
Because of the comparatively small deformations it can be assumed that the rocks surrounding 
the stratum are deformed linerly elastically. The stratum has the shape of a thin circular 
cylinder of radius R and thickness h, where h<R, so that the stratum is replaced by a slot 
of radius R (see the sketch). The stresses u and z equal zero on the bottom surface (z =H). 

To a first approximation we set z=o in the rock near the stratum while we express 
the normal stress 0 in terms of the displacement by taking the following scheme for deform- 
ation of the rocks of the stratum. The stratum is assumed to comprise granular or cracked 
rocks with extensively developed fracturing. A vertical component of the mountain pressure 

01 acts on the stratum elements, the stress equals o2 ih the rock skeleton, and fluid or gas 
with pressure p is in the pore space where 

u1 = o2 + p, Ao, = A.0, - Ap (5.1) 

The volume of a cylindrical ring of height h with inner radius r and outer radius r+ dr 
equals V = 2nrhdr its change (if radial displacements are neglected) is AV = 2nrdr Lull. There- 
fore AV/‘V = IuJh. On the other hand AVIV = m,/3,Aa, + (1 - m,)fiAp where m, is the initial 
porosity of the stratum and &, p is the compressibility factor of the pore and the skeleton. 
Eliminating AVIV and AU, from these relationships by using (5.1) we obtain for 2=0 
by setting u = Au, 

[%I _ u--- -ppo, 
~~&a 

z=O, r<R; p0 =[I-w)Ap 

Therefore, conditions (1.3) with a,(r)=p,, 'co (r)=O, a = -(hm&J’ occur. 
We consider the quantities m,, p, PO, Ap constants. The problem reduces to solving 

system (2.5) and (2.6) with To* 3 0, uO* 3 1. 
For the upper limit of the maximum deflection (i.e., for r =0) of the bottom surface 
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we note that it will be greater the smaller the value of H (i.e., the smaller the value of 

6). It can be shown by analysing (2.5) and (2.6) (with T,,* zO,o,*=l) that 

gz --f 0, s&J, (p0dt-t --hm,fi,Q-', p < 1, b + 0 

Substituting into (2.4), we obtain as b-+0 

4 cc ff) = PoNd (h + 2p)(h + p)-', r < R 

Thus, for any H (i.e., for any b) 

I uz k WI < 2 (1 - y)I Pa I hi%, y = I/& (h + p)-l (5.2), 

For numerical data /6/ Ap = -40 MPa, h = 600m, R = IO&m, PO = 2x 10m3 (MPa).r, fi = 

1.5~10-~ (MPa) -1, m, = 0.05,~ = 0.34 we obtain p0 = -34.3MPa, from which 
according to (5.2), 

I u, (r; H)I < 2.74 m 
which agrees with the approximate estimate obtained in /7/. 
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A GEOMETRICAL METHOD OF SOLVING THE PROBLEM OF MAXIMIZING THE NORM OF THE 

STATE VECTOR OF THE SYSTEM IN A FINITE CONTROL INTERVAL* 

A.M. TKACHEV 

The problem of constructing controls which maximize the norm of the 
state vector of the system at the right-hand end of a fixed control 
interval is considered. A numerical method of determining the maxima is 
proposed, based on a geometrical approach. Local convergence of the 
algorithm is proved and the direction of the search for the global 
maximum is discussed. Results of numerical modelling are given. 

The problem of maximizing the convex function J on a convex manifold of attainability 
discussed here, cannot be solved using traditional methods (for example, the method of minimum 
discrepancy and its modifications /l, 2/j, since in the case of an equivalent minimization 
the functional J is not convex. This leads, in particular, to violation of the theorems of 

uniqueness of optimal control. Indeed (Fig.l), mo're than one point may exist belonging to 
the convex manifold of attainability I;(T) at the maximum distance from the origin of 
coordinates. At the same time, there exists a unique point belonging to K(T) whose dis- 
tance from the origin of coordinates is a minimum. 
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